CORPS OF ENGINEERS NATIONAL DAM INSPECTION PROGRAM BOSTON AREA - MASSACHUSETTS COASTAL BASIN

SLUICE POND DAM

MA 00236

DELETED FROM PROGRAM (LOW HAZARD POTENTIAL)

HAYDEN, HARDING & BUCHANAN, INC. BOSTON, MASSACHUSETTS CONTRACT NO. DACW 33-80-C-0006

SLUICE POND DAM

Identification No.: MA 00236

Stream: Tributary to Saugus River

City: Lynn

County and State: Essex County, Massachusetts

Sluice Pond Dam was built about 1900. It is a stone masonry earth fill dam about 10 feet high by 130+ feet long. It appears that the original dam did not have a spillway. Water was discharged through a 24+ inch outlet pipe, to a mill building. then flowed into a stream to Flax Pond. Additional construction has taken place which has significantly altered the original dam. The 24 inch line has been sealed. The existing intake structure has a screened inlet, a 22 inch overflow pipe and a gatehouse with control gate. To the left of the intake structure is a 30 inch intake pipe having a gate in a manhole located at the crest. Outflow from the intake structure and 30 inch pipe flow into the city drain system to Flax Pond, along a baseball field. The level of the roadway (Broadway) was raised and the roadway embankment has been extended to a width which varies from 70 to 85 feet across the top. The bottom width, at the location of the "old stream channel" is at least 145 feet. The present dam can only be seen from the upstream pond side. The downstream area has been replaced by the roadway.

According to Corps Guidelines, the dam has a small size classification and low hazard potential. Failure analysis was

performed assuming the pond was filled to the top of roadway at the time of failure. The maximum failure discharge is 4,100 cfs. This assumes that 52+ feet of the dam and roadway embankment fails. This water will flow overland towards Flax Pond, through the field area shown in the enclosed photographs. All residential homes and other habitable structures are above the failure flood stage.

The changes which have occurred at this site over the years, as previously mentioned, have created a dam which is extremely wide in relation to its height, and one with a very flat downstream slope. As such a "dam type" failure, as analyzed above, is not likely to occur. Hazard potential is low.

4 90L	0 79.206	
	11-19-79	
8Y	MA	
	Œ DD	

HH HAYDEN, HARDING & BUCHANAN, INC. CONSULTING ENGINEERS BOSTON — WEST HARTFORD

JOB DAMS
SUBJECT SZVICEPOND
CLIENT COE

Built prior to 1917 (inspection report
Height & 9' = (1917) 1930 + may have
increased height by 18"

1928 + 30" drain connected to pond.

Drainage Area: 1.79 s.m. (1146 + a):

Pond Area & 31 a.

Present who level usually 6' +
below top of dam.

Storage Capacity = 322 = f.

Size Class = 5mall.

Hazard Class = Low

TEST FLOOD = 50 to 100 yr. range

USE 100 yr.

INFLOW = 1.79 × 3000 = fs × 4 = 1350 = f.

Cutflow = 1133 = fs 2' deep

across roadway - dssumes
res. full to alco 113 at start
of in Flow

JOB NO.	79.206	
DATE	11-19-79	_
BY	MA	_
	EDD	_

HH HAYDEN, HARDING & BUCHANAN, INC. CONSULTING ENGINEERS BOSTON — WEST HARTFORD

JOB DALL SUICE POND
CLIENT COM

TEST FLOOD

Inflow = 1350. of

Assume wtralau = 67. at besining of inflow

Storage capacity = 198 a-f to top of dam, between class. 67 to 73.

Outlet pipe (30" d) is of little. significance.

100 yr storm ~ 4.75" runoff.

Total runoff = 4.75 × 1/46 × 1/2 = 454 d
454 > 198 def roadway will be
over topped

Roadway Discharge Q= CLH15

DCLH" ASSUME res. full to dev 73± +0 1 2.65. 150. 1. 400. determine 2 " " 2.83. 1124. outflow." 2.5 " 3.95. 1571.

 $QP_1 = 1350 \cdot El_1 = 2.25 \cdot 5l_1 = 103 \text{ af} = 1.08''$ $QP_2 = 1350 \left(1 - \frac{1.08}{4.75}\right) = 1043' \text{ as} \quad \text{el}_2 = 1.9' \cdot 6l_2 = 73 \text{ af} = 0.76$ $QP_3 = 1350 \left(1 - \frac{0.76}{4.75}\right) = 1133' \text{ cfs} \quad \text{el}_3 = 2' \pm .$

ELEV ~ 175.

JOB NO. 79, 206	
DATE 11-19-20	
BY MA	_

HAYDEN, HARDING & BUCHANAN, INC.

JOB DAMS
SUBJECT SLUICE POND
CLIENT COE

Failure Outflow

$$QP_1 = 4,100$$
; cfs $EI_1 = 1.25$. Stor $I_2 = 8$ c-f $QP_2 = 4100 \left(1 - \frac{8}{322}\right) = 3997 = cfs$
 $EI_2 = 1.20$ Stor $I_2 = 7$ Stor $I_3 = 7.5$
 $QP_3 = 4100 \left(1 - \frac{7.5}{322}\right) = 4,005 \pm cfs$
 $EI_4 = 158.25 \pm cfs$

108 NC	79.206
DATE .	11-19-79
BY	MA
	FDD

HAYDEN, HARDING & BUCHANAN, INC.

JOB DAMS
SUBJECT SCUICE POND
CLIENT CUE

Sta. 10+00	The same of the sa	
5= 0.007 /	Qp = 4005.cfs	
	Field	Ap+s
Ţ	· -	-/ -/15 5

$$\frac{D}{VP}$$
 $\frac{A}{A}$ $\frac{R^{2/3}}{R^{2/3}}$ $\frac{E'}{V}$ $\frac{Q}{Q}$ $\frac{1}{2}$ $\frac{300}{2}$ $\frac{300}{2}$ $\frac{1}{1}$ $\frac{4.14}{14}$ $\frac{4.14}{1242}$ $\frac{1242}{2}$ $\frac{304}{2}$ $\frac{600}{600}$ $\frac{1.58}{1.58}$ $\frac{11}{2}$ $\frac{6.53}{2}$ $\frac{3917}{2}$ $\frac{1705}{2}$ $\frac{305}{2}$ $\frac{675}{2}$ $\frac{1170}{2}$ $\frac{1170}{2}$ $\frac{11705}{2}$ $\frac{11705}{2}$ $\frac{11705}{2}$ $\frac{11705}{2}$

$$Q_{1} = 4005$$
 $E|_{1} = 2.1 \pm 54, = 7.23 \text{ a-f}$

$$Q_{1} = 4005 \left(1 - \frac{7.23}{322}\right) = 39.15$$

$$E|_{2} = 2 \cdot 542 = 6.89. \text{ Stave} = 7.06.$$

$$Q_{1} = 4005 \left(1 - \frac{7.06}{322}\right) = 39.17 \pm cfs$$

$$E|_{3} = 157. \pm c$$

JOB NO	79.206
DATE	11-19-79
BY	MA
CH'O BY	FAD

JOB DAMS
SUBJECT SCUICE POND
CLIENT COE

STAGE DISCHARGE

Roddway Only

JOB NO	79.206	
DATE	11-19-79	
вү	MA	
CH.D I	sy <u>FDD</u>	_

JOB DAME
SUBJECT SLUICE POND
CLIENT COE

JOB NO	79.206	
DATE	11-19-79	
BY	MA	
	EDD	

HAYDEN, HARDING & BUCHANAN, INC CONSULTING ENGINEERS JOB DAMS
SUBJECT SCUICE PND
CLIENT CUE

PHOTO NO. 1 - Shows the upstream face of the Sluice Pond
Dam embankment. The inlet works can be seen in the
center of the photo. The screened inlet and gate
house were constructed about 1949. To the left
of the gate house is an inlet structure for a 30 inch
outlet pipe. Both outlets are connected to the storm
drain in the street (Broadway) which forms the embankment. This underground drain flows along side the
church, school, ball field and apartments (See Photos
Nos. 2, 3 & 4) and then into Flax Pond, about 1500 ft.
downstream.

PHOTO NO. 2 - Shows the Dam embankment looking along Broadway. The original Dam was about 10 ft. high at this location. It has been modified by the roadway. The height on the upstream face is about 6 ft. The width and length of the roadway are about 78 and 130 ft., respectively.

PHOTO NO. 3 - Shows the immediate downstream area, at the Dam.

The lowest areas (at the center of the photo) shows a parking area, part of the play field and the apartments.

Beyond the apartments, a section of Flax Pond can be seen.

The apartments were constructed upon a fill which is very level and extends up onto Flax Pond and about 4 ft. high

PHOTO NO. 4 - Shows the downstream area of the Dam embank-ment formed by the roadway fill. This is the parking area noted in Photo No. 3. The embankment height is about 10 ft. The play field area beyond, is very flat and wide. It extends to Flax Pond. All other development around the play field is at higher elevations.

PHOTO NO. 5 - Shows the relationship of the wide, flat field to the developed areas around it. Flax Pond can be seen to the right center of the photo. The first floor level of the apartments is about 4 ft. above the field level.

PHOTO NO. 6 - Shows the apartments and field area as seen from the roadway adjacent to Flax Pond. The Sluice Pond Dam outlet pipe and street drain is buried near the fence. This area has been filled.

NEDED-E

31 July 1981

Mr. Anthony D. Cortese, Commissioner
Department of Environmental Quality
Engineering
Commonwealth of Massachusetts
100 Cambridge Street
Boston, Massachusetts 02202

Dear Commissioner Cortese:

Inclosed for your use is a copy of the Report on Sluice Pond Dam (MA-00236). During the field inspection and the early stages of the preparation of this report, our contractor found that this dam had a "low potential hazard" for downstream damage in the event of a failure. Based on this finding, we directed our contractor to terminate his work and summarize the work accomplished to date. The report inclosed is a copy of this summary.

Sincerely,

Incl As stated JOE B. FRYAR Chief, Engineering Division

CF: Mr. Gould Eng Div Files NEDED-E

31 July 1981

City of Lynn City Hall Lynn, MA 01901

Gentlemen:

Inclosed for your use is a copy of the Report on Sluice Pond Dam (MA-00236). During the field inspection and the early stages of the preparation of this report, our contractor found that this dam had a "low potential hazard" for downstream damage in the event of a failure. Based on this finding, we directed our contractor to terminate his work and summarize the work accomplished to date. The report inclosed is a copy of this summary.

If you have any questions concerning this report, we suggest you contact the Commonwealth of Massachusetts, Department of Environmental Quality Engineering first; then if there are further questions contact Mr. Gould, Project Management Branch, Engineering Division of this office at (617) 894-2400, extension 313.

Sincerely,

Incl as stated JOE B. FRYAR Chief, Engineering Division

CF: Mr. Gould Eng Div Files